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ABSTRACT 

A new short proof is given for Brandt and Harrington's theorem about con- 

formal uniformizations of planar finitely connected domains as domains 

with boundary components of specified shapes. This method of proof 

generalizes to periodic domains. 

Letting the uniformized domains degenerate in a controlled manner, we 

deduce the existence of packings of specified shapes and with specified 

combinatorics. The shapes can be arbitrary smooth disks specified up to 

homothety, for example. The combinatorics of the packing is described by 

the contacts graph, which can be specified to be any finite planar graph 

whose vertices correspond to the shapes. This is in the spirit of Koebe's 

proof of the Circle Packing Theorem as a consequence of his uniformization 

by circle domains. 

1. I n t r o d u c t i o n  

CONFORMAL UNIFORMIZATION OF MULTIPLY CONNECTED DOMAINS. 

R iemann ' s  mapping  theorem tells us tha t  every s imply connected domain  in 

the R iemann  sphere C is conformally homeomorphic  to the unit  disk U, to the 

plane C, or to the sphere C. For domains tha t  are not  s imply connected there  is 

a more e labora te  theory  of conformal  uniformizat ion.  Let  D be some domain  in 

the R iemann  sphere C. It is a theorem tha t  D is conformally homeomorph ic  to 

some horizontal  slit domain;  tha t  is, a domain  whose boundary  components  are 

all line segments  parallel  to the x-axis [9, Vw W h e n  D is finitely connected,  
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Koebe's uniformization theorem tells us that D is conformally homeomorphic to 

some circle domain D*, a domain whose boundary components are circles and 

points. Moreover, D* is unique up to M6bius transformations. 

There are also various other such results (see [9], [24], [7], [12], [13]), but in the 

case of finite connectivity, the uniformization theorems of Brandt and Harrington 

are probably the most general and the ultimate. We defer the statement of these 

theorems to Section 3, and will state here their main corollary: 

1.1 THEOREM [3], [11]: Let D be a domain in C with finitely many  boundary 

components B 1 , . . . ,  Bn. Let K I , . . . ,  Kn be compact connected sets in C such 

that C - K j  is connected and K j  contains more than a single point for each j .  

Then there are sets K ~ , . . . ,  K* C C, with each K~ being homothetic to K j  or 

a singleton, such that V is conformally homeomorphic to D* = C - Uj~__l K~. 

Moreover, the conformal homeomorphism f :  D ~ D* can be required to match 

each Bj  with OK~ and i f  oo E D to satisfy the normalization 

(1.1) lira f ( z )  - z = O. 
Z - - - ~ O O  

Recall that  a homothety is a transformation of the form z --~ az + b with 

a E R, a > 0 and b E C. Two sets are h o m o t h e t l c  if one is the image of the other 

under a homothety. The normalization (1.1) is equivalent to the requirement that  

f has an expansion of the form f ( z )  = z + a l  z - 1  q- a2 z -2  -[- . . .  near infinity. 

When one sets Kj = [0, 1],j = 1 , . . . , n  in 1.1, one gets uniformization by 

horizontal slit domains in the finitely connected case, and when one sets each K j  

to be a disk, Koebe's theorem is obtained. Courant, Manel and Shiffman [7] have 

proved Theorem 1.1 in the special case that all the sets Kj are convex. 

In this paper we present a new short proof of Harrington's uniformization 

theorem. The proof is based on the topological notion of the degree of a proper 

map between manifolds. An advantage of this proof is that it allows one to 

replace (1.1) by various other natural normalizations, and generalizes to periodic 

domains, as we do in Sections 4 and 5. Brandt 's theorem came to the attention 

of the author only after the completion of a few drafts of this work. It is very 

similar to Harrington's theorem. Brandt's proof is also short, elegant and permits 

variations of the normalization (1.1). 

In general, the normalization (1.1) or its variants do not make the uniformized 

domain D* unique. (We discuss uniqueness issues below.) 
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PACKINGS. For us, a pack ing  is an indexed collection P = (Pc: v E V) of 

compact connected sets in the Riemann sphere C such that the interior of each 

set is disjoint from the other sets. The c o n t a c t s  g r a p h  of the packing is a 

combinatorial graph G = (V, E), whose vertex set is the indexing set of the 

packing and where an edge [u, w] appears in E precisely when Pu ~ P~ ~ 0. In 

the literature, the terms 'nerve' and 'tangency graph' are also used. It is easy to 

show that the contacts graph is a planar graph when the sets in the packing P 

are smooth disks. We now state the remarkable 

1.2 CIRCLE PACKING THEOREM [15]: Let G = (V, E) be a finite planar graph. 

Then there exists a packing of geometric disks in the plane P = (P,:  v E V) with 

contacts graph G. Furthermore, if G is isomorphic to the 1-skeleton of a triangu- 

lation of the Riemann sphere C, then P is unique up to MCbius transformations. 

Note that here and in the following the graphs are assumed to be without 

multiple edges and every edge has two distinct vertices. 

This theorem was first discovered by Koebe as a corollary to his conformal 

uniformization by circle domains. His argument can probably be sketched as 

follows. Starting with the graph G, one constructs a domain D in the plane 

whose boundary components are in one-to-one correspondence with the vertices 

of G. Without much difficulty, one arranges so that for every edge [u, w] of G the 

corresponding boundary components 'almost' touch. Then the uniformization 

theorem says that there is a circle domain D* that is conformally homeomorphic 

to D. One argues that also in D* circles that correspond to neighboring vertices 

are 'almost' tangent. In other words, the connected components of C - D* are 

disks, which 'nearly' have the contacts dictated by G. Then a limiting argument 

completes the proof. (One does not need to worry about excessive contacts.) 

In Section 6 we give a careful proof along these lines, but instead of using 

Koebe's uniformization by circle domains we use Theorem 1.1 and its variants. 

The result is a much more general packing theorem, in which the shapes of the 

packed sets can be arbitrary smooth disks. See Theorems 6.1 and 6.3. We close 

Section 6 by proving a packing theorem for doubly periodic graphs. 

We have mentioned that the mapping f in Theorem 3.1 is not unique, even 

if one imposes the normalization (1.1). This is shown in Section 7. However, 

Shiffman has shown that  f is uniquely determined when the sets Kj are strictly 

convex [23]. We adapt Shiffman's method to packings, and prove a uniqueness 
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theorem for packings of convex shapes. 

Recently, the Circle Packing Theorem has been rediscovered by Thurston 

([26], [25, Chapter 13]) as a corollary of Andreev's Theorem ([1], [2]) about 

the realizability of hyperbolic polyhedra with prescribed angles. Thurston gave 

a new proof for the theorem, and generalized the theorem to closed hyperbolic 

surfaces, and to patterns of circles with prescribed angles of intersection. He also 

conjectured that circle packings can yield approximations to conformal maps; 

that conjecture was later proved by Rodin and Sullivan [18]. Since then, inter- 

esting new proofs were given to the Circle Packing Theorem. A proof based on 

a convexity argument can be found in [6], and a Perron type approach is given 

in [5], [4]. In [19] the key is an application of,Brouwer's fixed point theorem, and 

the theorem is generalized to convex sets. Transversality is the main point in 

[22], and uniqueness based on separation arguments in the plane is the theme of 

[20], which also applies to the convex case. 

2. N o t a t i o n s  a n d  d e f i n i t i o n s  

A domain in (2 is a connected open set contained in (2. 

Let :D ~ be the space of all domains D C (2 that have exactly n boundary com- 

ponents and these have labels 1, 2 , . . . ,  n. (This means that, technically speaking, 

a point in :D" consists of a pair, (D, l) where D C C is a domain and l is a bijec- 

tion from {1, 2 , . . . ,  n} to the set of boundary components of D.) Elements of :D ~ 

will be called l abe led  domains .  When, D E :D ~ we denote the j - th  boundary 

component of D by OjD. Given D1, D2 E :D n, we say that f :  D1 --* D2 is a labe l  

p r e s e r v i n g  c o n f o r m a l  h o m e o m o r p h i s m  if it is a. conformal homeomorphism 

between the domains and it respects the labeling; that is, for each j = 1 . . . . .  n, 

OjD2 is the boundary component of D2 that corresponds under f to OjDI. 
(Every homeomorphism between domains in (2 induces a bijection between the 

sets of boundary components.) Henceforth, the homeomorphisms under consid- 

eration will always be label preserving, and thus the phrase "label preserving" 

will sometimes be omitted. 

Given D C :D n and j = 1, 2 , . . . ,  n, there is a unique connected component of 

( 2 -  D that contains OjD. We call it the j - th  ho le  of D, and denote it by chjD. In 

general, a hole  H is a compact subset of (2 such that (2 - H is homeomorphic to 

a disk. A n o n d e g e n e r a t e  hole  is a hole that contains more than a single point, 

and a b o u n d e d  hole  is a hole that does not contain c~. It is clear that OjD is 
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a hole when D C ~:)n j = 1, 2 , . . . ,  n, and so the definitions are consistent. An 

equivalent definition for a hole is 'a compact connected nonempty proper subset 

of C whose complement is connected'. 

Define :D n(~) = {D C T~n: cc E D}. The most natural topology on :D(~)n may 

seem to be the topology induced by Hausdorff convergence of each OjD, but this 

is not the appropriate topology for our purposes, since the Hausdorff limit of 

bounded holes may fail to be a hole. For example, the Hausdorff limit as t --~ 1 

of arcs of length 2:rt on the unit circle is the whole unit circle, which is not a 

hole. 

We shall now define a metric on :D n Denote the collection of all bounded (~)" 

holes by 7-/, and let H1, H2 E 7-/. Define p.(H1, H2) as the least p >/0 such that 

H2 is disjoint from the unbounded component of C - Np(H1), where Np(H1) = 

{z E C: d(z, H1) <~ p} and d(z, H1) is the distance from z to H1. Now set 

p(Hb H2) = max{p.(H1, H2), p,(H2, H1)}. 

This is easily seen to be a metric on 7-/. If a sequence H1,H2 . . . .  in 7~ has a 

Hausdorff limit K C C, then the p-limit of this sequence is the complement of 

the unbounded connected component of C - K. In particular, from the usual 

compactness property of the Hausdorff metric we see that the set of holes con- 

tained in a compact subset of C is compact. The metric on ~n  is now defined (~) 
by: 

n 

d(D1, D2) = ~p(OjDl,0jD2) 
j - ~ l  

for D1, D2 E ~)n(~). To correlate this metric with the established terminology we 

note that convergence in 1) n(co) is equivalent to kernel convergence together with 

'consistency of the labels'. 

Given a positive integer n and a set A, we denote by A~ the set of points 

(al . . . .  ,an) C A n that satisfy aj ~ ak for all j ~ k, j, k = 1 , 2 , . . . , n .  When 

K C C, a C ~, we denote the set {az: z E K} by aK. Similarly, K + c  = 

{z + c: z ~ K}.  

We also set R+ = {r E ]~: r >/0}. 

3. The finite connectivity uniformization theorems 

We recall that  a map ~: A ~ B is p r o p e r  if the inverse image of every compact 

set in B is compact. 
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3.1 HARRINGTON'S THEOREM[11]: Let P be a relatively open subset o f C  ~ • R~_ 

containing ~ • {0} n. Let r P --~ /)(~) be a proper continuous function. 

Suppose that 

(3.1) Ojr = {cj} whenever (c,r) E P and rj = 0 

holds for j = 1 , 2 . . . , n .  (Ojr denotes the j - th  boundary component of 

r r).) Then every domain A E ~)~o~) is conformally homeomorphic to some 

domain A* in the image of r A* E r  Furthermore, the conformal homeo- 

morphism f:  A --* A* can be required to be/abe l  preserving and to satisfy the 

normalization (1.1). 

This statement of the theorem is slightly stronger than the one appearing 

in [11], because the topology we use for :Dn(o~) is weaker. 

Theorem 1.1 is a direct corollary of Theorem 3.1. We now repeat the simple 

argument of [11] to that  effect. 

Proof of Theorem 1.1 using Theorem 3.1: We assume without loss of generality 

that 0 E Kj for each j .  Let Kj(c , r )  = r jK j  + cj for (c,r) E C n • R~_, let P be 

the set of (c, r) such that Kj(c, r) M Kin(c, r) = 0 for j ~ m, and for (c, r) E P let 

r  be the domain in/)n(o~) whose complementary components are Kj(c ,r ) ,  

j = 1 , . . . ,  n. Theorem 3.1 now clearly follows from 1.1. I 

3.2 Remark: Of course, Theorem 3.1 can give much more general u/fiformiza- 

tions. For j = 1, 2 , . . . ,  n let Kj: C • R+ -~ 7 / b e  continuous and proper, and 

suppose that Kj(c,O) = {c} for every c E C. Then Theorem 1.1 holds when 

one requires each K]  to be equal to some Kj(c, r), instead of specifying it up to 

homothety. The proof is the same. 

For example, we can require K~' to be a line segment whose direction is e i~, 

where r is its length, require K~ to be an ellipse whose eccentricity and inclina- 

tion depend continuously on the position of the center, and require K~ to be a 

circular arc whose center is f (z l ) ,  where Zl is some arbitrarily chosen point in 

D and f is the conformal homeomorphism. (This last specification does not fall 

exactly into the framework of the previous paragraph, but does follow from 3.1. 

The trick needed is to let {zl} be an artificially introduced additional boundary 

component.) 

A further example is the following. Let d be some Riemannian metric on C. For 

each compact ball in this metric Bd(C, r) with center c and radius r let b(Bd(C, r)) 
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be the complement of the unbounded connected component of C - B(c,  r). (We 

have b(Bd(C, r)) = Bd(c, r) if Bd(C, r) is simply connected.) Then every domain in 
^ n /)~ is conformally homeomorphic to a domain of the form C - U j = I  b(Bd(Cj, r j ) )  (~) 

for an appropriate choice of cj,  rj  (allowing also rj ---- 0),  and the conformal 

homeomorphism can be required to satisfy the normalization (1.1). 

A similar remark applies to the uniformization and packing theorems below. 

Theorem 1.1 is also an easy corollary of 

3.3 BRANDT'S THEOREM[3] :  Let  n be a posi t ive integer, let D E 1 ) ~ ) ,  and let 

E denote the space o f  all conformal homeomorph i sms  from D into C. that  satisfy 

the normalizat ion (1.1). Suppose that for each j = 1 , . . . ,  n a continuous map 

A j : T[ • G---* 7-~ 

is given. Further suppose that  for every j = 1 . . . . .  n and for every (H, f )  6 

7-/x E there exists  a conformal homeomorphism satisfying (1.1) from C. - H onto 

- A j ( H ,  f ) .  Then there is an f e E such that  

O j f ( D )  = A j ( O j f ( D ) ,  f )  

holds for j = 1 , . . . ,  n. 

Theorems 3.3 and 3.1 are very similar. Both provide the existence of a 

conformal map f :  D ~ C satisfying certain conditions. In Brandt 's theorem 

f satisfies a system of equations, while in Harrington's theorem f ( D )  is in the 

image of a map. 

Proo f  o f  Harrington's  Theorem 3.1: Let D C /)n(oo). There is a unique con- 

formal homeomorphism go from D onto a horizontal slit domain that satis- 

fies the normalization (1.1). (It is a consequence of the Area Theorem that 

the (injective) conformal map that satisfies the normalization and maximizes 

limz-o~ Re z(g(z)  - z) is this go [9, Chapter V, w Let S C/gn(~o) be the collec- 

tion of those domains whose boundary components are all horizontal slits, and 

let r  = g o ( D ) .  

We will now show that  r "D n ----o S is continuous. Let D1 D2,. be a (o0) , �9 �9 

sequence i n / ) ( ~ )  that converges to D E /)~(~o). From the normalization of the 

mappings gv~, k = 1, 2 , . . . ,  it follows that this sequence forms a normal family 

on compact subsets of D. Thus a subsequence, (gDk : k C J),  converges uniformly 
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on compact subsets of D, say to g. It is easy to see that g must also satisfy the 

normalization (1.1), and is therefore not a constant. Since a locally uniform 

limit of conformal maps is either a constant or is conformal, g is conformal. 

Now, Carath~odory's Kernel Convergence Theorem [9, Vw Theorem 1] implies 

that the domains (gDk(Dk): k E J) converge to g(D); that is, (r k E J)  

converges to r  This proves the continuity of r 

We now establish that r is proper. Given W E ~ ' ~ ) ,  let U(W) be the set of 

all S C S such that cSjS is contained in the interior of OjW for each j = 1 , . . . ,  n. 

This is an open set in S. Let K be a compact subset of S, and let S E K. There 

clearly is some Ws C T~(~) such that S E U(Ws). As in the above paragraph, 

the collection 7" of all conformal maps of Ws that satisfy the normalization (1.1) 

is compact under the topology of uniform convergence on compact subsets of 

Ws. Therefore, there is some e > 0 so that for every h E :r  all the boundary 

components of D = h(Ws) are contained in the disk of radius 1/e around 0 and 

(~jD is contained in the unbounded component of C - N~(OkD), for any two 

distinct j , k  E {1 , . . . , n} .  Here N~(OkD) denotes the e-neighborhood of cSkD. 

A conformal map satisfies the normalization (1.1) if its inverse does, and so 

the restriction of g~l to Ws is in T whenever D E ~-I(U(Ws)). Therefore, 

every D E r satisfies the above conditions with c. This implies that 

r has compact closure in I) n(~). Since, by compactness, finitely many 

sets of the form U(W) cover K,  we see that r  is contained in a compact 

subset of I)(~).  But r  is closed, since r is continuous. Therefore, r  

is compact, and r is proper. 

Denote ~? = r o r P --* $. We will prove that ~? is surjective. Let us first 

introduce a convenient coordinate system on $. Take any 

( c , r )  = ( c 1 , . . .  , c n , r l , . . .  , r n )  E ~ n  x R ~ .  

Consider the n horizontal slits whose left endpoints are c l , . . . , c n  and whose 

lengths are r l , . . . ,  rn, respectively. Let Q be the set of such points (c, r) so that 

the slits are disjoint, and when (c, r) C Q let S(c, r) E $ be the corresponding 

slit domain. 

With this coordinate system on S, 7 can be thought of as a map from P C 

C ~ • R~ to Q c C" x R~. It is clear that ~ is continuous and proper. The 

following lemma will show that ~ is also surjective. 
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3.4 DEGREE LEMMA: Let  M be a topological manifold, let P, Q be relatively 

open connected subsets o f  M x ~ _ .  and let 

/140 = {m �9 M: (m, 0) �9 P}.  

Suppose that  ~1: P --~ Q is a continuous proper map  such that  r/(m, O) = (m, O) 

whenever m C Mo. Also suppose that for each j = 1 . . . .  , n we have r~ = 0 i f  

~ ( m , r )  = (m*,r*)  and rj = O. That  is, ~1 is the ident i ty  on Mo x {0} ' ,  and 

7/(P A (M x R~_ -1 x {0} x IR+ - j  )) C M x IR~_ -1 x {0} x R+-J. Further assume 

tha t  Mo ~ O. Then  the degree of  Tl is one, and thus ~ is surjective.* 

See [8, VIII.4] regarding the notion of the degree of a proper  m a p  between 

manifolds. A reader  more  comfor table  in the differentiable set t ing can avoid the 

use of topological  degree by first smooth ing  the m a p  ~) below, and then  using 

the propert ies  of the differentiable degree ([17], [10]), which are a consequence of 

Sard 's  Theorem,  to establish tha t  the smoothed  m a p  is surjective. 

Proof'. Given a �9 JR, let a + = max(a ,0 ) ,  and let r + = ( r + , . . . , r  +)  for r = 

(r l , . . . ,  rn)  �9 R n. Let /5, Q be the inverse images of P and Q, respectively, 

under  the m a p  id x + : M x ]~n ~ M x R n tha t  takes each (m, r)  to (m, r+) .  

Ex tend  ~/to a m a p  0 : /5  ~ Q, O(m, r) = (~h(m, r) ,  [ (m,  r)) ,  defined by 

r), r) +) = r+), 

~ j ( m , r )  >>. 0 whenever rj >/O, 

~ j ( m , r )  = rj whenever rj < O. 

I t  is clear tha t  ~) is a proper  continuous m a p  from /5 to (~ and tha t  these are 

open and connected subsets of M x It  n. Therefore,  ~) has a well defined de- 

gree. To see what  tha t  degree is, we look at the negat ive or than t  of Q, Q_ = 

{ ( m , r )  �9 Q: rj < 0 for j = 1 , . . . , n } .  The  pre image of (~_ is the negat ive or- 

than t  o f /5 ,  and ~)(m, r)  = (m, r)  there. Thus  the degree of ~ is 1, and the same 

is t rue  for ~. This  proves the lemma.  | 

Proo f  o f  Theorem 3.1, Continued: Take M = C n. We assume wi thout  loss of 

general i ty tha t  P is connected,  since otherwise we may  replace P by the connected 

componen t  of it t ha t  contains C~ x {0} n. To show tha t  r /(P) = Q we only need 

* If M is not orientable, then the degree of ~/is not necessarily defined as an integer, 
but only mod 2. 
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to verify the remaining hypotheses of the Degree Lemma, and these follow from 

(3.1) and the removablity of isolated singularities for bounded analytic functions. 

Given A E/)~  let p E ~/-1({r Then A is conformally homeomorphic to (~), 
r and the conformal homeomorphism, -1 gr o gA, satisfies the normalization 
(1.1). | 

Remark: The proof that  r is proper shows that  the following statement holds. 

Let K be a compact subset o f / )n  and l e t / (  be the collection of all D E / ) n  (~), (o~) 
such that  there is some D'  E K and a conformal homeomorphism h: D ~ D I 

that  satisfies the normalization (1.1). T h e n / ~  is compact. 

4. O t h e r  normalizations for t h e  u n i f o r m i z i n g  map 

One of the classical uniformizations for finitely connected domains is by means 

of circle domains, domains with circle and point boundary components. In that  

setting, the uniformization is unique up to MSbius transformations. In order 

to get a unique uniformization, one can impose some normalization. A natural  

normalization is to fix the images of three distinct points of the domain. Another 

possibility is to fix the value and the first two derivatives at a given point. (This 

can be seen as a limiting case for fixing the values at three distinct points, when 

the points get closer and closer.) Yet a third possibility is fixing one nontrivial 

boundary component to be a given circle, say the unit circle, and fixing three 

points on it. And there are still other variations. As one generalizes circle 

uniformizations to more general uniformizations, it is of interest to see which of 

these normalizations can be made to work. 

The normalization (1.1) corresponds to fixing the value and the first two deriva- 

tives at a point, where the point and its image are chosen to be co. The goal 

of this section is to show that  our method of proof of Theorem 3.1 also gives 

uniformizations with other normalizations. 

4.1 THEOREM: Let A E 7) n, let wo, wl,w2 E A be three distinct points with 

co # w0, co # Wl, and let K 1 , . . . ,  K,~ E 7-I be nondegenerate holes that contain 

O. Then there is a (label preserving) conformal homeomorphism f: A ~ A*, such 

that each OjA* is homothetic to Kj  or consists of a single point for j = 1 , . . . ,  n. 

Moreover, any one of the following normalizations can be imposed. 

(1) f(wo) = O, f ( W l )  = 1 a n d  f ( w 2 )  = co.  

(2)  f(wo) = 0, f f ( W l )  = 1 a n d  f ( w 2 )  = c r  
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f (wo)  = O, f ' (wo)  = 1 and f(w2) = cx~. 

I f  n > O, then 01A* has the form r lK1 for some rl >>. O, and f ( w l )  = 

1, f(w2) = c~. 

I f  n > O, then 01A* has the form r lK1 for some rl >>. O, and f ' ( w l )  = 

1, f = oo. 

I f  n > 1, then 01A* has the form r lK1,  02A* has the form r2K2 + 1, and 

f (w2)  = c~. Here r l ,  r2 E Rq_. 

4.2 THEOREM: Let A E 7) n, and suppose that OnA is a Jordan curve. Let 

qo,qx, q2 E OnA be three distinct points in positive order, and let wo, Wl E A. 

Let J be a Jordan domain in C, let Po, Pl,P2 be three distinct points on OJ in 

positive order, and let 7: [0, 1) --~ J be proper and continuous. Suppose that 

K 1 , . . . ,  Kn-x E 7-/ are nondegenerate holes that contain O. Then there is a 

conformal homeomorphism f:  A --* A*, such that A* C J, O~A* = O J, and each 

OjA* is homothetic to K j  or consists of a single point for j = 1, 2 , . . . ,  n - 1. 

Moreover, any one of  the following normalizations can be imposed. 

(1) f (q j )  = pj holds for each j=O, 1, 2. 

(2) f(wo) = and f'(wo) > O. 
(3) f (wo)  = 7(0) and f(qo) -- Po. 

(4) f (wo) = 7(0) and f ( w l )  = 7(t) for some t E [0, 1). 

(5) I f  n > 2, then 01A* has the form rxKx + 7(0) for some rl >>. O, and c52A* 

has the form r2Kz + 7(t) for some r2/> 0, t E (0, 1). 

(6) If n > 1, then 01A* has the form r lK1 + 7(0) for some rl >/ O, and 

f(qo) = Po. 

(7) I f  n > 1, then f (wo)  = 7(0), and 01A* has the form r lKx  + 7(t) for some 

r l  ~ 0, t E (0, 1). 

In some of these normalizations we have used f to denote also its continuous 

extension to O,~A. 

The proofs for all these normalizations are very similar, and are similar to 

the proof of 1.1. We will only give the proof of (5) in Theorem 4.2. Note that 

normalizations (4) and (7) follow from normalization (5), since w0 and Wl can be 

deleted from A to introduce additional boundary components, and normalizations 

(2), (3) and (6) can then be obtained through a limiting process. 

We now introduce some additional notations. Let J be as in Theorem 4.2, and 

denote by :D~ the set of all domains D E D n that are contained in J and whose 
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n-th boundary component is O J; that is, O~D = OJ. Define the metric on ~)~, to 

be d(D1, D2) n-1 ~- E j = I  p(OjDI ,0 jD2) ,  where p is as in Section 2. 

The following theorem is analogous to Theorem 3.1. 

4.3 THEOREM: Let  J and 7 be as in Theorem 4.2. Let  n >1 3, and let P be a 

relatively open subset  o f J  "~-3 x [0, 1) x ~ _  -1 that  intersects j,~-3 x [0, 1) x {0} n-1 

Let  r P ~ :D~ be a proper continuous function. Suppose that  

(4.1) Ojr  = {cj}  whenever ( c , t , r )  E P and rj = 0 

holds for j = 1, 2 . . . ,  n - 3, and 

t, r) = 

On-l )(c, t, r) = {"y(0)} 

7(0) e On- l r  

whenever (c, t, r) C P and r~-2 = O, 

whenever (c, t, r) E P and rn-1 = 0, 

whenever (c, t, r) E P. 

Then every domain A C T~3 is conformally homeomorphic  to some domain A* in 

the image o f  r A* C r  

Proofi Let Po be a connected component of P that intersects j n - 3  x [0, 1) • 

{0} n - l ,  and let r be the restriction of r to P. Let :D3* be the collection of all 

domains D E :D3 such that 7(0) C cSn_lD. By our assumptions, the image of r 

is contained in :D~*. 

Let C n be the collection of all domains D C ~'~ such that all the boundary 

components of D are circles or points, such that O~D = OU (the unit circle), 

such that 0 is the center of On- lD ,  and such that the center of O~_2D lies on the 

positive real ray ~+. 

Given any D C T~* there is a unique conformal homeomorphism gv: D ---* 

D*, such that D* E C '~. (Existence follows from Theorem 1.1 using MSbius 

transformations. For a discussion of uniqueness see Section 7. In this ease of 

circles, both uniqueness and existence are classical, see [14], [9].) Let r :D~* 

C '~ be defined by r  = g o ( D ) .  Then, as in the proof of Theorem 3.1, it is not 

hard to show that r is continuous and proper. 

We'll prove that r o r  ~ Cn is surjective, and to this end we introduce 

the following parameterization of C n. Let x = ( c , t , r )  E U n-3  • [0, 1) x ~[~_-1. 

For j = 1 , . . . ,  n - 3, let Cj(x) be the circle with center cj and radius r j ,  let 

C,~_2(x) be the circle with center t and radius rn-2,  let C n _ l ( x )  be the circle 
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with center 0 and radius rn - l~  and let Ca(x) = OU. Let Q be the collection 

of those x �9 j n - 3  • [0, 1) x R~_-I such tha t  there is a domain  C(x)  �9 C ~ with 

OjC(x) = Cj(x)  for j = 1 . . . .  ,n .  Then  C: Q -~ C ~ is a homeomorph i sm.  

Now denote 7 = C - 1  o r o r Po ~ Q; this is m a p  from an open subset  of 

j n - 3  • [0,1) • N~_ -1 to an open subset  of U ~-3 • [0,1) • R~_ -1 .  I t  is clear 

tha t  7 is continuous and proper.  Moreover,  7(Po N Jn--3 X [0, 1) • ]~_-1 • {0} • 

N+ - j - l )  C U ~-3 • [0, 1) • R~_ -1 • {0} x N~_ - j - 1  holds for j = 1 , . . .  , n  - 1. Since 

P0 intersects j ~ - 3  • [0, 1) • {0} ~-1,  the proof  of L e m m a  3.4 shows tha t  the degree 

of 7 is the same as the degree of the m a p  70: Mo - *  U n-3 X [0, 1) defined by 

7(c, t, 0) = (7o(c, t), 0), where/1//o = {(c, t): (c, t, 0) �9 Po}. 

The  m a p  7o can be easily unders tood,  as follows. Let  h: J --~ U be a conformal  

homeomorph i sm  tha t  takes 7(0) to 0. For z �9 U - {0}, let Az: U ~ U be the 

ro ta t ion  of U tha t  takes z into (0, 1). Then  

70 ( c , t )  = ()~h(y(t)) ( h ( C l ) )  . . . .  ,)~h(y(t)) (h(Cn-3)) , )~h( .y( t ) )  ( h ( ~ [ ( t ) ) ) )  , 

wherever 70 is defined. It  is then quite easy to verify tha t  70 has degree 1. (For 

example,  one can use a proper  homotopy  from 7 to the curve h - l ( [0 ,  1)) to get a 

proper  homotopy  from 70 to the m a p  (c, t) --* ( h ( C l ) , . . . ,  h(c~_3), t). Since h is 

an or ientat ion preserving homeomorph i sm,  this la t ter  m a p  has degree 1.) This  

shows tha t  7 is surjective. 

Now suppose tha t  n > 2, and let A �9 T)~. Let f l  be some conformal  
~)n* au tomorph i sm of J such tha t  A1 = f l ( A )  �9 j , and let p be some point  in 

7 - 1 ( { C  -1 or  Then  A is conformally homeomorphic  to r and the con- 

formal  homeomorph i sm  -1 gr o gA1 o f l :  A --~ r satisfies all the requirements .  
| 

5. Per iod ic  uni forrnizat ion  

We now s ta te  a theorem about  doubly periodic uniformizat ions of doubly  periodic 

domains.  

5.1 THEOREM: Let D C C be a doubly periodic domain; that is, D is invari- 

ant under two translations, z ~ z + Wl and z -* z + w2, with Wx,W2 linearly 

independent over R. Let F be the group generated by these translations, and 

assume tha t  D / F  has finitely many boundary components in the torus C/F ,  say. 

B1, B2,.  �9 Bn. Let K1, .  �9 Kn E ~ be nondegenerate bounded holes. Then 
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there is a conformal homeomorphism f: D --* D* of D onto a doubly periodic 

domain D* C C, such that f ( z  + co,~) -- f (z)  + w~ holds for m = 1, 2 and all 

z E D, where ~ ,  w~ are periods of D*, and such that for every j = 1 , . . . ,  n each 

boundary component [~j of D that maps to Bj under the projection C --* C/F  

corresponds under f to a component of C - D* that is homothetic to Kj or is a 

singleton. 

Furthermore, let qo ~ ql be two points in D, let Ao, A1 be two distinct bound- 

ary components olD,  and let/0, il be the indices such that Aj projects to B~j 

for j = 0, 1. Suppose that 0 E Ki~ for j = 0, 1. Then f can also be required to 

satisfy any one of the following normalizations. 

(1) f(qo) : 0 and f(ql) : 1. 

(2) f(qo) = 0 and f'(qo) = 1. 

(3) For j = 0, 1, the boundary component A~ of D* that corresponds to Aj 

has the form j + rj K~ for some rj ~ O. 

(4) f(ql) = 1 and the boundary component A~ olD* that corresponds to Ao 

has the form r Kio for some r >>. O. 

If we choose ql = q0 + WX in normalization (1), we get w~ = 1. 

Remark: Similar theorems hold for singly periodic domains. Actually, when D 

is singly periodic and D/F has finitely many boundary components in C/F  (here 

F is the infinite cyclic group of translations that  take D into itself), one can 

take advantage of the fact that  the cylinder C/F  is conformally homeomorphic 

to C* -- C - {0} to get periodic uniformizations for D from the theorems of 

the previous sections. This is one example for the use of uniformizations as in 

Remark 3.2, where the boundary components are not specified up t'o homotheties 

- -  if one wishes to get a periodic uniformization for D with the boundary com- 

ponents specified up to homothety, one can uniformize D/F in C* with boundary 

components specified as the images of a hole under homotheties followed by the 

exponential map. 

We will need some definitions for the proof. Let x l , x  2 E C be linearly inde- 

pendent over R, and suppose that  H is a hole, if the union 

[-I = U H + mix  1 + m2x 2 
ml,m2EZ 

is a disjoint union, then it is called an (x 1, x 2) periodic hole. Note that  an (x 1, x 2) 

periodic hole is closed in C, since x 1 and x 2 are linearly independent over R. 
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We now define a space 7)p of doubly periodic domains,  as follows. A point  

x E 7)~ has the form x = (x 1, x 2, X 1, X 2 , . . . ,  X~) ,  where x 1, x 2 E C are linearly 

independent  over R, and X 1, X ~ , . . . ,  X n are disjoint (x 1, x 2) periodic holes. The  

d o m a i n  u n d e r l y i n g  x is D(x) = C - U ~j=l xJ .  The  set of x c 7)p such tha t  

O, 1 C D(x) will be  denoted by 7)~. 
n n The  topology on 7)p is defined as follows. Let  x C 7)p, and let e > 0. Define 

U (x, e) as the set of all y E 7)~ such tha t  ]yl _ x 11 < e, ]y2 _ x 2 ] < e, XJ N B (0, 1/~) 

does not intersect an unbounded component  of C - N~(YJ) and YJ A B(0,  l / e )  

does not intersect an unbounded  component  of C - N~(xJ) for j = 1, 2 , . . . ,  n. 

Here B(0,  r)  denotes the disk of radius r a round 0, and Nr denotes  the e- 
n neighborhood of a set. The  topology on 7)p is defined as the collection of sets 

n W C ~Dp such tha t  for every x E W there is some e > 0 such tha t  U(x, c) C W. 

Below, we will make  use of the following theorem from [12]. 

5.2 THEOREM: Let  D C C be a domain  with countably m a n y  boundary compo- 

nents in C. Then there is a conformal homeomorphism g from D onto a domain 

D* C C whose boundary components are all circles and points. Moreover, g is 

unique up to post-composition by M6bius transformations. 

It  is possible tha t  our appl icat ion of this theorem can be replaced by more  

classical results. 

Proof of 5.1: We will only consider normal iza t ion  (1); the other  normal iza t ions  

are t rea ted  similarly. 

Let x -- (x 1, x 2, X 1 , . . . ,  X ~) E 7)'. Since the bounda ry  of D(x) has countably  

m a n y  bounda ry  components ,  by 5.2 there is a conformal  h o m e o m o r p h i s m  gx f rom 

D(x) onto a domain  whose bounda ry  components  are circles and points,  and gx is 

unique up to pos t -compos i t ion  by Mhbius t ransformat ions .  From the uniqueness 

we conclude tha t  g~ conjugates  the t ransla t ions  z ~ z + x 1, z --~ z + X 2 of D to 

Mhbius t ransformat ions ;  tha t  is 

9x(z + x k) = Mk(g (z)) 

is valid for k = 1, 2, where M1, M2 are some Mhbius t ransformat ions .  The  bound-  

ary  componen t  of gx(D(x)) in (~ tha t  corresponds to the bounda ry  componen t  

{oc} of D(x) in C is therefore stabilized by a discrete group of Mhbius t rans-  

format ions  t ha t  is isomorphic to Z 2, and must  therefore be a single point.  We 

now make  the normal iza t ion  tha t  this bounda ry  componen t  is {co} and tha t  
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gx(0) = 0,g~(1) = 1. This normalization uniquely determines g~. Moreover, 

with this normalization, the Mhbius transformations M1, M2 must also be trans- 

lations, say by yl,  yU, respectively. Thus y -- (yl, y2, y 1 , . . . ,  y n )  is in/)1, where 

YJ is the periodic hole in C - g~(D) that  corresponds to X j under gx. Now 

define r 7) I ~ 7)' by r  = y. 

We shall demonstrate that  r is continuous. Suppose that  a sequence xl ,  x2 , . . .  

in 7)~ converges to xo E 7)1. Then every compact subset of the domain D(xo) is 

contained in all but finitely many of the domains D(xk). From the normalization 

of the maps g~, it is clear that  the sequence g ~  forms a normal family. We may 

assume therefore, without loss of generality, that  these maps converge uniformly 

on compact subsets of D(xo), say to g. The function g cannot be a constant, 

since g(0) = 0, g(1) = 1, and g is therefore a conformal homeomorphism. Set 

x 1 Yk = r  Since y~ = gx~(k) ,  and similarly for y2, the convergence of the 

sequence g ~  implies that  the sequences yl ,  y~ also converge, say to yl,  y2. It  is 

also clear that  g(D(xo)) is a doubly periodic domain with periods yl ,  y2. Thus 

the boundary component in q~ of g(D(xo)) that  corresponds to the boundary 

component {oc} of D(xo) is {c~}. Since all other boundary components of D(xo) 

are isolated, it is easy to establish with a limit argument that  all the boundary 

components of g(D(xo)) are circles and points. By the uniqueness of g~o, this 

then implies that  g = g~0, and the continuity of r follows. 

The proof that  r is proper proceeds very much like the argument in the proof 

of Theorem 3.1, but more details need to be checked. Let W E 7)n+1 be a 

bounded domain with n + 1 labeled boundary components such that  0, 1 E W 

and oc E 0n+lW, and let El ,E2 C W be compact sets such that  el,e2 are 

linearly independent over ]~ whenever el E El ,  e2 E E2. Define 

6 --= 5(E1, E2) --= inf{itel + se21: el E El,e2 E E2, t ,s  ElI(, t 2 + s 2 >1 1}; 

clearly, 5 > 0. Define U(W, E1, E2) c 7)' as the set of all y = (yl, y2, y1, . . . , yn  ) 

E T )1 such that  W C D(y) and for each j = 1 , . . . , n  the intersection 

~jW M (C - D(y)) is a connected component of YJ and yk is in the interior 

of Ek for k -- 1, 2. Clearly, U(W, El,  E2) is open in 7)1, and the open sets of this 

form cover D I. 

The collection T of all conformal maps h of W that  take W into C and satisfy 

h(0) -- 0, h(1) = 1, c~ E On+lh(W) is compact under the topology of uniform 

convergence on compact subsets of W. This means that  there is some e > 0 
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such that for every h E T the distance between any two boundary components of 

h(W) is at least e, the c neighborhood of any boundary component of h(W) does 

not separate the other boundary components of h(W), U~=iOjh(W ) U h(Ei U E2) 

is contained in the disk B(0, l /c) ,  and h(W n B(O, 6)) D B(O, c), h(W) D B(1, e). 

Now suppose that  x E r  El,  E2)). The restriction of the map g~-i to 

W is in T. We therefore conclude that the distance between distinct boundary 

components of D(x) is at least e, the e neighborhood of any boundary component 

of D(x) does not separate the other boundary components of D(x), the diameter 

of any boundary component of D(x) is at most l /c ,  the distance from {0, 1} 

to the boundary of D(x) is at least c, and x l, x 2 E B(0, l /e) .  Moreover, since 

g~(mix 1 + m2x 2) = mig~(x i) + m2gx(x 2) holds for ml ,  m2 E Z and g~(x i) E 

Ei ,gx(x  2) E E2, we conclude from the definition of 6 and from gx(B(O, c) M 
D(x)) C B(0, 5) that the infimum of Irnlx 1 + m2x21 for (0, 0) • (mi, m2) E Z 2 is 

greater than c. Thus the closure of r  Ei ,  E2)) in :D' is compact. Using 

this, it is easy to establish that ~ is proper, as in the proof of Theorem 3.1. 

Let M = GL2(]R) x (~2/~2) n, where GL2(]R) is the group of nonsingular 

linear transformations of ll~ 2, and let M+ C M consist of all points of M whose 

projection to GL2(~[) has positive determinant. (We identify C with R 2 , and Z 2 

with the set {hi + n2i: nl,  n2 E Z}.) For 

p = (T,  c 1 -~- Z 2, c 2 -~- Z 2 . . . . .  c n ~- Z 2, r l ,  r 2 , . . . ,  r n )  E M x ]~.~ 

d e f i n e  x(p)  = ( x l ( p ) , x 2 ( p ) , Z l ( p ) , . . . , X n ( p ) )  by  x l ( p )  = T(1),x2(p) = T ( i ) ,  

and 

XJ(p) = rjKj + T(cj + Z2), 

for j = 1, 2 , . . . ,  n. Let P C M x R~ be the set of points p E M x ~_ such that 

x(p) is in D'. Similarly, define y(p) in the same way, but with each Kj replaced 

by a compact geometric disk, and let Q c M x ~_ be the set of all p E M x R~ 

such that y(p) E I)'. It is clear that x: P ---, :D' and y: Q ~ T~' are continuous 

injective proper maps and that the image of y coincides with the image of r 

Moreover, since y is injective, continuous, and proper and :D' is locally compact, 

it follows that y: Q ---* y(Q) is a homeomorphism. 

Let P0 be the connected component of P that intersects M+ x {0}, and consider 

the map ~] = y - i  o r o x: P0 ~ Q. This map satisfies the requirements of the 

Degree Lemma 3.4, and is therefore surjective onto the connected component of 
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Q that contains 7/(Po). This connected component consists of all q E Q whose 

projection to GL2(R) has positive determinant. The theorem with normalization 

(1) now easily follows. I 

6. Pack ings  

We now state our generalization of the Circle Packing Theorem. 

6.1 PACKING THEOREM: Let G = (V, E) be a finite planar graph, let a E V 

be some vertex of the graph, and let (Pv: v E V) be a collection of  smooth 

(C 1) closed topological disks in C indexed by the vertices of  G. Suppose that 

cx~ E interior(Pa) and cx~ ~ Pv for all v E V - {a}. Then there is a packing 

Q -- (Q~: v E V)  whose contacts graph is G such that each Q~ is homothetic to 

Pv and Qa -- Pa. 

It is possible to require additional constraints on the packings that arise from 

the normalizations in the conformal uniformization. To describe these we need 

the following definition. 

6.2 Definition: Let Q = (Q~: v E V) be a packing in C, let w, u be distinct 

vertices in V, and let p E C. We say that the sets Qw and Qu cover  p (for the 

packing Q) if p E Qw N Q~ or if p is in the closure of a connected component of 

~2 - (Qw to Q~) that is disjoint from U . e v  Qv" 

6.3 THEOREM: In the situation of Theorem 6.1, let Po,Pl,P2 be distinct points 

on OPt, and let 7: [0, 1) --+ C - P~ be continuous and proper. Suppose that 

bo, bl, b2 are three distinct neighbors of a in G, co, cl E V - {a} are neighbors in 

G, do, d1 E V - {a, bo}, and do is not a neighbor of  a. Also assume that 0 E P,  

for v E {do, dl}. Then the packing in Theorem 6.1 can be further required to 

satisfy any one of  the following normalizations. 

(1) Q~ and Qb~ cover pj for j = O, 1, 2. 

(2) Q,a and Qbo cover PO, and Qco and Qcl cover 7(0). 

(3) Qdo = roPdo + 7(0) and Qd, = rlPdl + 7(t),  for some ro, rl E ~ and 

t e [0,1). 

(4) Q~ and Qbo cover Po, and Qdo = roPdo + 7(0) for some r0 E R+. 

These normalizations correspond to normalizations (1), (3), (5) and (6) in 

Theorem 4.2. It is left to the reader to formulate the analogs of (4) and (7) of 

4.2. 
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As Figure 6.1 illustrates, it is essential that  the definition of 'cover' include the 

possibility that  the covered point is not in the intersection of the two sets. 
P~ 

Figure 6.1. 

Proof of 6.1 and 6.3: Assume without loss of generality that  the graph G is 

isomorphic to (the 1-skeleton of) a triangulation of the sphere ~;. (For if G is not 

isomorphic to a triangulation, then new vertices and edges can be appended to G 

to make it a triangulation without inserting any new edges between two existing 

vertices. Then one chooses disks Pv to correspond to the new vertices.) It  will 

be convenient not to distinguish between the abstract  graph G and its geometric 

realization as a triangulation. Hopefully, this will cause no confusion. 

We now make a somewhat arbitrary construction. Let Ba be some Jordan 

curve in C that  separates a from all the other vertices of G and intersects each 

edge incident with a exactly once, and let A be the Jordan domain bounded by 

Ba that  does not contain a. On every edge e of G, choose some point xe C e 

that  is not a vertex, and for edges incident with a let that  point be the point of 

intersection eMBa. For m = 1, 2, 3 , . . . ,  v E V - { a }  and e an edge containing v let 

xe,v(m) be a point in the subarc of e joining v to xe, chosen so that  xe,,(m) ~ xe 

and limm--.~ x~,v(m) = x~, and let Br be the closed subarc of e extending 

from v to x~,v(m). For v �9 Y - {a}, m = 1 , 2 , 3 , . . . ,  let By(m) = Ur Be, .(m),  

where the union extends over all edges e that  contain v, and let B~(m) = B~. 

Finally, let D(m) be the domain A - Uvey-{~t  B,(m). See Figure 6.2. 

Consider normalization 6.3.(2) first. Let e0 be the edge that  connects a and 

b0, and let el be the edge that  connects co and Cl. By Theorem 4.2 with nor- 

malization (3), it follows that  for every m = 1, 2, 3 , . . . ,  there are disjoint sets 

(Qv(m): v �9 V) with each Qv(m) homothetic to P~ or a point and with Qa(m) = 

Pa, such that  D(m) is conformally homeomorphic to D* (m) d~ q~_ U . ~ v  Q.  (m). 

Furthermore, we assume, as we may, that  (the continuous extension to D(m)UB,~ 
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of) the conformal homeomorphism fro: D(m) ~ D*(m) satisfies fm(Xeo) = Po 

and fm(xel) = ~(0). By choosing a subsequence, we also assume without loss 

of generality that Qv ~ f  limm--,oo Qv(m) exists for every v E V. We shall prove 

that Q = (Q~: v E V) is a packing as required. 

Figure 6.2. The domain D(m). 

First, it is clear that each Q~ is either homothetic to P~ or a point, and that 

Qa = Pa. It is also obvious that each Q~ is disjoint from the interior of each 

Qw, w E V - {v}. Now consider two neighboring vertices v, w. Since the extremal 

length of the curve family in D(m) joining Bv(m) and B,o(m) tends to zero as 

m ~ e~, it follows that the same is true for the curve family joining Q~(m) and 

Qw(m) in D*(m), and therefore, the distance between Q~(m) and Q,~(m) tends 

to zero. (See [16] for the notion of extremal length and its properties.) In the 

limit, we see that Q~ and Q,~ must intersect. 

We shall now verify that Qeo and Qcl cover ~,(0). Let ~'o, ~'1 be simple curves 

that join co and cl, are disjoint from G, except at co and Cl, and their union 

separates x~ from V-{co, cl}. For each m, let r0(m) be the family of all curves in 

D(m) that join B~ o (m) and Be1 (m) and that are homotopic to ~0 in D ( m ) -  {x~ } 

with endpoints kept on B~ o (m) and Be~ (m). Let I'1 (m) be similarly defined from 

"tl. The extremal length of r0(m) tends to zero as m ~ ~ .  Therefore, the same 

is true for the families r;(m) de__~ {.fm('~): "~ �9 r0(m)}. This means that  the 

length of the shortest curve in r;(m) tends to zero. Since the same is true for 

r~(m) ae2 {fm(~'): ~' �9 r l (m)} ,  and since whenever ao �9 r ; ( m ) ,  ~1 �9 r~(m) the 



Vol. 93, 1996 C O N F O R M A L  U N I F O R M I Z A T I O N  AND P A C K I N G S  419 

union C~o U ol 1 U Qco(m) u Qc,(m) separates 7(0) = fm(x~l) from each Qv(m), 

v ~ co, el, it follows that  in the limit Qco and Qc~ cover 7(0). 

The proof that  Qa and Qbo cover po is similar, and is left to the reader. Thus 

6.3.(2) is verified. 

We now show that  none of the sets Qv, v c V degenerates to a point. Let 

Vo C V be the collection of all vertices v such that  Qv is a point. With the 

intention of reaching a contradiction, we assume that  Vo r 0. Let Uo be some 

connected component of Vo in G (in the graph theoretic sense). Since Q~,MQ.~ ~ ~) 

whenever v and w neighbor in G, it follows that  U,euo Q- is a single point, say 

U.euo Qv = {y}. Let OUo be the set of vertices that  are not in U0 but neighbor 

with a vertex in U0. 

OUo can contain at most two vertices, because y E N,~eOUo Q,, and it is impos- 

sible for a collection of more than two smooth sets with disjoint interiors to have 

nonempty intersection. Since G is a triangulation of the sphere, it is 3-connected; 

that  is, removing less than three vertices from G does not disconnect it. It  there- 

fore follows that  V = Uo u DUo. But a ~ V0 D Uo, so a E OUo. Since a, co, cl 

are all distinct and [OUo[ < 3, at least one of Co, cl must be in Uo, say Co E Uo. 

Because Qco and Qcl cover 7(0), we must have Q~o = {~/(0)} = {y}. That  gives 

a contradiction, since a E OUo and 7(0) ~ Qa. This contradiction establishes 

that  Vo = 0, and there are no degeneracies. 

We now see that  Q is a packing of smooth sets and its contacts graph contains 

G. Since the contacts graph must be planar, and since G is a triangulation, it 

follows that  the contacts graph is G. This completes the proof with normalization 

6.3.(2). 

In the proof of 6.3 with normalization 6.3.(3) we proceed similarly, but use 

normalization (5) of Theorem 4.2 in place of 4.2.(3). This ensures that  6.3.(3) 

holds. The proof that  no sets in Q = (Q.: v E V) degenerate to points needs 

some modifications for this case. Again, let Vo be the set of vertices v such that  

Q .  is a singleton, and assume that  Vo ~ 0. Let Uo be a connected component 

of Vo. As before, we see that  ]OUol ~ 2, and conclude that  V = Uo U OUo. Let 

{Y} = Uvevo Q~, then y E OQa, since a ~t Uo. This then implies that  do ~ Uo, 

because 7(0) E Qdo. So we have V - Vo = cOUo = {a, do}. Let Vo, Vl, v2,. . . ,  Vk be 

the neighbors of do in cyclic order, with vk = Vo. For m large there is a sequence of 

arbitrarily short curves B1 . . . .  , • such that  each Bj joins Q~_~ (m) and Q,~ (m) 
k 

and Uj=l(~J  u Q,j(m)) surrounds Qdo(m). Since the diameter of each Q~ (m) 
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(j = 1 , . . . ,  k) tends to zero as m --* co, this implies that the diameter of Qdo (m) 
tends to zero. But this contradicts the fact that do ~ U0. Thus the proof with 

normalization 6.3.(3) is complete. 

The proofs for normalizations (2) and (4) are similar, and are left to the reader. 
| 

6.4 Remark: We have not at tempted for maximal generality in the Packing 

Theorem 6.1. The packed sets do not have to be prescribed by homotheties; 

there are many other possible variations. See, e.g., Remark 3.2. Also, as the 

proof shows, the smoothness requirement can be replaced by any condition that 

will insure that the intersection of more than two packed sets is empty. For 

example, one can require that the packed sets do not have angles ~ 21r/3. If 

the smoothness requirement is dropped without replacement, then Theorems 6.1 

and 6.3 remain intact, except for two possible types of degeneracies: the contacts 

graph of the packing will contain G, it may also contain additional edges; and 

some sets in the packing may degenerate to points. 

We now prove a theorem about doubly periodic packings. 

6.5 THEOREM: Let 7r: C --~ T be the universal cover of a torus T, and let T1, T 2 

be generators for the group of  deck transformations F. Let G = (V, E)  be a F- 

invariant graph embedded in C, and suppose tile the projection G = G(V, E) = 

It(G) is a finite graph. (G may have loops and multiple edges.) For each v �9 V let 

Pv be some smooth (C 1) compact topological disk in C. Suppose that a, b �9 ~z 

are distinct, and assume that 0 �9 Pc, 0 �9 Pb. 

Then there exists a packing Q = (Q,: v ~ fT) in C whose contacts graph is 

such that each Q,  is homothetic to P~(v) and Qa = rlP,~(~), Qb = 1 § r2P~(b) 

hold for some rl ,  r2 > 0. The packing can also be required to be doubly periodic; 

that is, there are Wl,W2 such that Qri(v ) = wj + Q~ holds for every v �9 ~z and 

j =  1,2. 

In the situation where all the sets P,  are strictly convex and G is the 1- 

skeleton of a triangulation of C, it is not known if there can be a packing Q 

that  fails to be doubly periodic but does satisfy all the other requirements. This 

cannot happen if all the P~ are disks. On the other hand, the "bricks" tiling 

([2m + n, 2m + n + 2] • [2n, 2n + 2]: n, m �9 Z) can be deformed to a non-doubly 

periodic tiling ([2m+s(n),  2m+s(n)+2] • [2n, 2n+2]: n, m �9 Z). This shows that  

there is a packing with doubly periodic triangulation graph that is not doubly 
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periodic if one replaces the strict convexity by convexity (the corners may be 

rounded so that  the packed sets are smooth). This question is related to the 

problems of uniqueness, which will be addressed in the next section. 

Proof: The proof is similar, of course, to the proof of Theorems 6.1 and 6.3. 

Assume, without loss of generality, that G is the 1-skeleton of a triangulation of 

C. On every edge e of G, choose some point x~ E e that is not a vertex. For m = 

1, 2, 3 , . . . ,  v C V and e an edge containing v, let x~,,(m) be a point in the subarc 

of e joining v to x~, chosen so that x~,v(m) # x~ and limm--.~ x~,,(m) = x~, and 

let B,(m) be the union of the arcs extending from v to x~,,(m) along all edges e 

that contain v. Let D(m) be the domain C - U . e ~  B,(m). The points xr 

can be chosen F-periodically, and so we assume, without loss of generality, that  

D(m) is F-periodic. 

By Theorem 5.1, for every m = 1, 2 , . . . ,  there are disjoint sets (Qv(m): v c V) 

such that each Qv(m) is homothetic to P~(~) or is a point, Qa(m) = r l ( m ) P r ( a ) ,  

Qb(m) = 1 + r2(m)P~(b) for some rl(m),r2(m) ~ O, and there is a conformal 

homeomorphism fro: D(m) ~ C - U~e~ Q~" Moreover, (Q~(m): v E V) is 

periodic; that is, there are wl(m),w2(m) C C linearly independent over R such 

that  Qrj(,)(m) = wj(m) + Q,(m) holds for j = 1,2, m = 1 , 2 , 3 , . . . ,  and v E V. 

Let d(m) be the largest diameter of any of the sets Q,(m), and define the sets 

Q'~(m) by Q'(m) = d(m)-lQ,(m). It is clear that  for some subsequence all the 

sets Q'~(m) converge in the Hausdorff metric; let Q' = (Q'(v): v E V) be the 

limit configuration for such a subsequence. 

Clearly, the configuration Q' is doubly periodic and the largest diameter of a 

set in Q' is 1. Moreover, the same extremal length argument as in the proof of 

6.1 shows that Q~ ~ Q~ # 0 whenever v, u are neighbors in G. We now check 

that none of the sets Q'~ is a singleton. Let V0 be the set of v �9 V such that  Q'~ 

is a singleton. If U0 is a connected component of V0, then, as before, ]0U0[ ~< 2 

and therefore, by 3-connectivity, l~ = Uo U OUo. But these assertions together 

contradict periodicity. This contradiction establishes that  Q" is never a singleton. 

It is now clear that  for an appropriate d > 0 the packing Q, = dQ', v �9 

satisfies all the requirements. I 

7. A discussion of uniqueness 

In general, uniqueness does not hold in the uniformization and packing theorems 

above. Consider, for example, the situation in Theorem 1.1 with normalization 
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(1.1). When the sets Kj are such that uniqueness holds for each D �9 7? ~ (oo), one 

gets a bijective correspondence between the space ,9 of horizontal slit domains in 

:D~(oo) and the space D(K1, .  �9 �9 , Kn) of domains in :D(~oo) of the form C - [-Jj~--1 K~ 

with each K]  homothetic to Kj  or a singleton. This bijective correspondence is 

then easily seen to be a homeomorphism. Therefore, uniqueness must fail when 

the space ~D(K1,..., Kn) is disconnected. Figure 7.1 displays such an example 

with n = 2. 

Figure 7.1. I)(E,  F)  is disconnected. 

On the other hand, under certain assumptions on the sets Ki, uniqueness 

can sometimes be proven. For example, as we have mentioned, Shiffman [23] 

has shown that in the special case where the sets Kj  in Theorem 1.1 are all 

strictly convex (and one imposes the normalization (1.1)), the domain D* and 

the conformal homeomorphism f are unique. The argument is based on counting 

the fixed points of f l  o f~ l ( z ) ,  where f l ,  f~ are two hypothetical uniformizing 

homeomorphisms for D. The same approach is also applied in [12] to circle 

packings and uniformization by circle domains. 

We now adapt this technique to packings with convex shapes (without smooth- 

ness or strict convexity assumptions). 

7.1 THEOREM: Let Q = (Q,: v E V), P -- (P,:  v �9 V) be two packings in C of 

compact convex sets with nonempty interior. Suppose that for each v �9 V the two 

sets Qv, Pv are homothetic, that the contacts graph G of P is also the contacts 

graph of Q, and that it is the 1-skeleton of a triangulation T of ~2. Let [a, b, c] 

be a triangle in T, and assume that Qv = P, for v = a, b, c. Further assume 

that a11 the sets Q,,  P~ are disjoint from the unbounded connected component of 

C - (Qa u Qb U Qc). Then Q = P; the two packings are the same. 

Proof: Assume, as we may, that V ~t {a, b, c}. Denote the vertices, edges and 
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triangles of T by V, E,  F,  respectively. Note that  each of the packings Q, P 

induces an orientation on T, and these are in fact the same orientation (since 

they agree in the triangle [a, b, c]). Take T with that  orientation. 

We now construct a piecewise flat surface homeomorphic to C, as follows. 

Let T* be a cell division of C that  is dual to T. Every vertex in T* has three 

neighbors. Replace every vertex v in T* by a triangle, and connect every vertex 

of this new triangle to a vertex in a new triangle corresponding a neighbor of v, 

as in Figure 7.2. Denote the resulting cell division by T t. We endow T ~ with a 

piecewise flat metric by declaring each face of T I to be a regular polygon with 

unit length edges. 

Figure 7.2. The cell division T I. The edges of T are indicated by broken lines. 

Each triangle t = [vl, v2, v3] of T corresponds to a triangle st of T ~, each vertex 

vj of t corresponds to an edge st,v~ of st and each edge of t corresponds to a vertex 

of st. Each edge e of T corresponds to an edge se of T ~. Again, this is a duality 

correspondence, the edge se connects vertices in the triangles corresponding to 

faces of T containing e and lies on the boundary of polygons of T t corresponding 

to the vertices of e. Each vertex v E V corresponds to a 2n-gon sv in T ~, where 

n is the degree of v, the number of neighbors it has. There is one edge s~,~ of 

sv corresponding to each edge e that  contains v, and there is one edge s,,,t of s,~ 

corresponding to each triangle t that  contains v. 

We now construct maps ],  g: H ~ (;, where H = U j e E u g  Sj. Consider a 

triangle t = Iv1, v2, v3] E F. There are two possibilities: either the intersection 

Q~I N Qv2 n Q~a consists of a single point, pt, or it is empty and there is a unique 

component kt of ~2 - (Q~I u Q ~  u Q,3) that  does not intersect any sets of the 

packing Q, and Okt consists of three arcs, one on each Qv,, j = 1, 2, 3. In the 

first case, define f to be equal to pt on st, and in the second, let fls~ equal (the 

continuous extension of) the conformal map from st to kt that  takes each edge 
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st,,j of st to Okt M Q.j ,  j = 1, 2, 3. This defines f o n  UteF st. 
Now consider an edge e -- Iv1, v2] C E. Note that  f is already defined on the 

endpoints of sr since these are vertices of st1 and st2, where t l , t2  are the two 

faces of T that  contain e. The intersection Qvl n Qv2 consists of a single point, 

or a line segment. In each case, let f be affine on sr Then f maps s~ onto 

Q-1 M Qv2. This completes the definition of f on H.  

In exactly the same manner, but using the packing P instead of Q, we define 

the map g: H -~ C. Let v E V be any vertex. Note that  the restriction of f to 

Os, traverses OQ, weakly preserving orientation. That  is, if Pl, P2, P3 are distinct 

points in positive circular order on Os, and f (Pl) ,  f(P2), f(P3) are distinct, then 

they are in positive circular order on OQ,. Similarly, g is weakly orientation 

preserving on every OSv. 

Suppose now that  P r Q. Then there must be some vo C V such that  P-o is 

not a translate of Qv0. Since P-o is homothetic to Q-o, there is a nonempty open 

set A of T C C such that  Pro is contained in the interior of Q-0 + T or Q~o + r is 

contained in the interior of Pro. 

Let r E A. Suppose for the moment that  for each v E V the intersection 

OPv M (OQ, + T) contains at most two points and that  f - g does not a t ta in the 

value T on OH. 

7.2 LEMMA: Let El,  E2 C C be two Jordan curves oriented positively with re- 

spect to the domains they bound. Suppose that the intersection E1 M E2 contains 

at most two points. Let f l :  S 1 --* El ,  f2: S 1 --* E2 be continuous mappings that 

weakly preserve orientations, and suppose that f l  - f2 is never zero. Then the 

winding number off1 - f2: S 1 ~ C around 0 is nonnegative. I f  E1 is contained 

in the domain bounded by E2, then this winding number is 1. 

The proof is almost the same as the proof of the Circle Index Lemma (2.2) of 

[12]. See also [23]. 

Set h(z) = f ( z )  - g(z) - T. Since we are assuming that  [OPv M (OQv + T)[ ~ 2, 

we can apply the above lemma with f l  = f[08. and f2 = (g+T)[os~ and conclude 

that  the winding number of h around Os, is nonnegative for each v E V. On the 

other hand, around Os, o the winding number of h is 1, again by the lemma. Let 

t E F, t  ~ [a, b, c], then co ~ f (s t ) ,  co r g(st), and h is analytic in st. Therefore, 

the winding number around 0 of h[os, is nonnegative. For t = [a, b, c], h[o~ is 

a constant, by the construction and the assumption Pv - Qv for v = a, b, c. 
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Therefore, in this case the winding number is zero. So we get 

E winding(hl~ '0)  ~> 1. 
jEVuF 

This is impossible, since each edge of T ~ is traversed twice in opposite directions 

in the curves Osj ( j  E V U F) .  

It  thus only remains to be seen that  T E A can be chosen outside of the range 

of ( f  - g)lOH and such that  IPv n (Qv + v)l ~< 2 for every v E V. The image of 

OH under f - g is easily seen to be a closed set with empty interior. Therefore 

the following lemma completes the proof of the theorem. 

7.3 LEMMA: Let E l , E 2  C C be homothe t ic  convex curves, and let B be the set 

o f t  E C such that  the intersection E1 n (E2 + T) contains more  than two points. 

Then B is o f  first Baire category. I f  E1 is s tr ic t ly  convex, then B is empty.  

Proof: Let r E B, and let k(z)  = a z  + fl, a > 0 be the homothety that  takes 

E1 to E2 + T. We will show that  k takes some line whose intersection with E1 is 

a nontrivial segment into a parallel line (possibly the same) with that  property. 

Since there are at most countably many such lines, this will prove the lemma. 

We assume that  k(z)  = az .  There is no loss of generality in this assumption, 

since it can be achieved by a change of coordinates. Let Yx, Y2, Y3 be three distinct 

points in the intersection E1 N k(E1), and set x j  = a - l y j  = k - X ( y j ) ,  j - 1, 2, 3. 

Then the six points xl ,  x2, x3, yl, y2, Ya are in El .  If xl ,  x2, x3 are collinear, then 

the line containing them intersects E1 in a nontrivial segment, by the convexity 

of El ,  and k takes this line to the line containing Yl, Y2,Y3. Therefore, we may 

assume that  Xl ,X2 ,X  3 are not collinear. 

We analyze the different possibilities for the location of 0, the fixed point of k, 

in relation to the points xl ,  x2, x3. See Figure 7.3. 

If 0 is in the open regions D1 or D2 of Figure 7.3, then Xl is in the interior 

of the convex hull of Yl, x2, x3. A contradiction to the convexity of El .  If 0 is 

in the region D3 of the figure, then yl is in the interior of the convex hull of 

Xl, Y2, Y3, a contradiction again. If 0 is on the line connecting x2, x3, then this 

line is invariant under k and must contain a nontrivial segment contained in El .  

By symmetry,  these are the only cases we need to consider. This completes the 

proof. | 

With  the additional assumption that  the sets Q~ are smooth and strictly con- 

vex, Theorem 7.1 is a special case of the results in [20]. The method of [20] and 
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[21, Theorems 5.3, 5.4], is a related topological technique for proving uniqueness 

of packings. For example, the following can be obtained from the means of [20]. 

x! 

Figure 7.3. Possible locations of the fixed point of k. 

7.4 THEOREM: In Theorem 6.3, if G is isomorphic to the 1-skeleton of a tri- 

angulation of  the sphere and the sets Pv, v E V - {a} are strictly convex, then 

normalization (1) uniquely determines the packing Q. 

Figure 7.4 gives an example of a situation where uniqueness fails for a 

triangulation graph and yet the sets Pv, v C V - {a} as well as C - Pa are 

convex. 

2 

P0 

Figure 7.4. Nonuniqueness - -  slide Q0 sideways. 
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